organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(1,3-Benzothiazol-2-yl)aminocarbonyl]methyl piperidine-1-carbodithioate monohydrate

Xu-Jia Lu,^a Hong-Bin Zhao,^{a,b}* Liang Chen,^a De-Liang Yang^a and Bang-Ying Wang^a

^aDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and ^bEnvironmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China

Correspondence e-mail: zhaohbhanlf@163.com

Received 11 May 2011; accepted 16 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.095; data-to-parameter ratio = 19.8.

In the title compound, $C_{15}H_{17}N_3OS_3 \cdot H_2O$, the piperidine ring has a chair conformation. The crystal structure is stabilized by weak intermolecular N-H···O, O-H···N and O-H···O hydrogen-bonding interactions.

Related literature

For the biological activity of substituted *N*-benzothiazol-2-ylamides, see: Patel & Shaikh (2010); Hou *et al.* (2006). For related structures, see: Wang *et al.* (2008).

Experimental

Crystal data	
$C_{15}H_{17}N_3OS_3 \cdot H_2O$ $M_r = 369.39$	a = 10.6326 (3) Å b = 12.0735 (3) Å
Monoclinic, $P2_1/c$	c = 14.7824 (4) A

$\beta = 113.133 \ (2)^{\circ}$
V = 1745.08 (8) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.918, T_{\rm max} = 0.918$

Refinement

T.L.L. 4

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.095$ S = 1.113992 reflections

s $\Delta \rho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$

Table I			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H3\cdotsO2^{i}$ $D2-H2'A\cdotsN3^{ii}$ $D2-H2'B\cdotsO1^{iii}$	0.84 0.92 0.91	1.91 2.04 1.92	2.745 (2) 2.920 (2) 2.821 (2)	170 160 169
				1 1

 $\mu = 0.44 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.020$

202 parameters

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^-$

 $0.20 \times 0.20 \times 0.20$ mm

15147 measured reflections

3992 independent reflections

3497 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Key Laboratory of Functional Organometallic Materials of the College of Hunan Province, Hengyang, Hunan, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2417).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hou, X. T., Wang, M., Jiang, S. R. & Niu, S. G. (2006). Chin. J. Pestic. Sci. 8, 222–226.
- Patel, N. B. & Shaikh, F. M. (2010). Sci. Pharm. 78, 753-765.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J. K., Peng, F., Jiang, J. L., Lu, Z. J., Wang, L. Y., Bai, J. F. & Pan, Y. (2008). *Tetrahedron Lett.* 49, 467–470.

supplementary materials

Acta Cryst. (2011). E67, o1488 [doi:10.1107/S1600536811018460]

[(1,3-Benzothiazol-2-yl)aminocarbonyl]methyl piperidine-1-carbodithioate monohydrate

X.-J. Lu, H.-B. Zhao, L. Chen, D.-L. Yang and B.-Y. Wang

Comment

Substituted *N*-benzothiazol-2-yl-amides are an important class of heterocyclic compounds that exhibit a wide range of biological properties such as antimicrobial activity (Patel & Shaikh, 2010), antivirus infections (Hou *et al.*, 2006). In this paper, the structure of 1-(dithiopiperidyl)-*N*-benzothiazole-2-yl-acetamide is reported.

The title compound (I) (Fig. 1) crystallizes in the centrosymmetric space group P21/c. One 1-(dithiopiperidyl)-*N*-benzothiazole-2-yl-acetamide molecule and a solvent water molecule in the asymmetric unit. The piperidine ring has a chair conformation; Crystal packing is stablized by N—H···O, O—H···N and O—H···O hydrogen bonds (Figs. 2 and Table 1).

Experimental

Single crystals were recrystallization from an ethanol solution at room temperature.

Refinement

H atoms were placed in calculated positions (C—H=0.93–0.97 Å, N—H=0.85 Å, O—H=0.91–0.92 Å) and refined in riding mode, with U iso~(H) = xU~eq~(C,N), where x = 1.5 (O,N) and 1.2 for all other H atoms.

Figures

Fig. 1. A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids.

Fig. 2. Packing of the title compound. Dashed lines indicate hydrogen bonds.

{[(1,3-Benzothiazol-2-yl)aminocarbonyl]methyl} piperidine-1-carbodithioate monohydrate

Crystal data	
$C_{15}H_{17}N_3OS_3{\cdot}H_2O$	F(000) = 776
$M_r = 369.39$	$D_{\rm x} = 1.406 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -P 2ybc a = 10.6326 (3) Å b = 12.0735 (3) Å c = 14.7824 (4) Å $\beta = 113.133 \ (2)^{\circ}$ V = 1745.08 (8) Å³ Z = 4

Data collection

Duid concention	
Bruker APEXII CCD area-detector diffractometer	3992 independent reflections
Radiation source: fine-focus sealed tube	3497 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -12 \rightarrow 13$
$T_{\min} = 0.918, \ T_{\max} = 0.918$	$k = -14 \rightarrow 15$
15147 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.095$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0424P)^{2} + 0.6208P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3992 reflections	$(\Delta/\sigma)_{max} < 0.001$
202 parameters	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

E d R Cell parameters from 8358 reflections $\theta = 3.0 - 27.5^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.20\times0.20\times0.20~mm$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S3	-0.11155 (5)	0.39341 (3)	0.39288 (3)	0.04084 (12)
S2	0.14706 (5)	0.19374 (3)	0.16270 (3)	0.04125 (12)
S1	0.34529 (6)	0.24704 (5)	0.36726 (3)	0.05848 (15)
01	0.00460 (15)	0.32824 (10)	0.26734 (10)	0.0505 (3)
N3	-0.14307 (15)	0.20161 (10)	0.46198 (10)	0.0387 (3)
N1	0.37483 (17)	0.30273 (14)	0.20291 (11)	0.0504 (4)
N2	-0.02961 (10)	0.18869 (7)	0.35648 (7)	0.0398 (3)
H3	-0.0250	0.1209	0.3715	0.060*
C15	-0.19188 (10)	0.38955 (7)	0.47513 (7)	0.0390 (3)
C14	-0.24377 (10)	0.47707 (7)	0.51145 (7)	0.0524 (4)
H14	-0.2375	0.5497	0.4927	0.063*
C13	-0.3046 (2)	0.45284 (17)	0.57595 (18)	0.0621 (5)
H13	-0.3404	0.5099	0.6008	0.075*
C12	-0.3132 (2)	0.34427 (18)	0.60443 (17)	0.0607 (5)
H12	-0.3539	0.3300	0.6486	0.073*
C11	-0.2626 (2)	0.25758 (15)	0.56845 (15)	0.0506 (4)
H11	-0.2696	0.1852	0.5874	0.061*
C10	-0.20087 (17)	0.28022 (13)	0.50311 (12)	0.0381 (3)
С9	-0.09440 (16)	0.24949 (12)	0.40459 (11)	0.0344 (3)
C8	0.01508 (18)	0.23052 (13)	0.28907 (12)	0.0389 (3)
C7	0.0712 (2)	0.14189 (14)	0.24244 (13)	0.0450 (4)
H7A	-0.0025	0.0920	0.2054	0.054*
H7B	0.1392	0.0992	0.2943	0.054*
C6	0.30123 (18)	0.25403 (13)	0.24634 (12)	0.0401 (3)
C1	0.3334 (2)	0.31304 (17)	0.09552 (13)	0.0524 (5)
H1A	0.2466	0.2758	0.0618	0.063*
H1B	0.4010	0.2776	0.0763	0.063*
C2	0.3200 (2)	0.43266 (18)	0.06582 (15)	0.0607 (5)
H2A	0.2454	0.4658	0.0785	0.073*
H2B	0.2983	0.4380	-0.0042	0.073*
C3	0.4502 (3)	0.4956 (2)	0.1215 (2)	0.0794 (7)
H3A	0.4357	0.5738	0.1057	0.095*
H3B	0.5218	0.4697	0.1016	0.095*
C4	0.4948 (3)	0.4796 (2)	0.23209 (18)	0.0701 (6)
H4A	0.5832	0.5144	0.2661	0.084*
H4B	0.4295	0.5156	0.2534	0.084*
C5	0.5044 (2)	0.3595 (2)	0.25880 (17)	0.0632 (5)
H5A	0.5774	0.3253	0.2449	0.076*
H5B	0.5261	0.3520	0.3287	0.076*
O2	0.99835 (17)	0.03537 (10)	0.61071 (10)	0.0591 (4)
H2'A	0.9501	0.0735	0.5538	0.089*
H2'B	1.0111	0.0822	0.6617	0.089*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S3	0.0527 (3)	0.02621 (18)	0.0499 (2)	0.00354 (15)	0.0270 (2)	0.00531 (15)
S2	0.0520 (3)	0.0395 (2)	0.0354 (2)	-0.00204 (17)	0.02063 (18)	-0.00248 (15)
S1	0.0800 (4)	0.0582 (3)	0.0310 (2)	0.0053 (2)	0.0152 (2)	0.00416 (19)
01	0.0772 (9)	0.0309 (6)	0.0565 (8)	0.0079 (6)	0.0403 (7)	0.0086 (5)
N3	0.0505 (8)	0.0279 (6)	0.0419 (7)	-0.0021 (5)	0.0225 (6)	0.0002 (5)
N1	0.0531 (9)	0.0581 (9)	0.0363 (7)	-0.0110 (7)	0.0135 (7)	0.0000 (7)
N2	0.0581 (9)	0.0250 (6)	0.0431 (7)	0.0033 (6)	0.0273 (7)	0.0030 (5)
C15	0.0415 (8)	0.0336 (8)	0.0442 (8)	0.0010 (6)	0.0192 (7)	0.0000 (6)
C14	0.0612 (11)	0.0352 (8)	0.0684 (12)	0.0057 (8)	0.0336 (10)	-0.0015 (8)
C13	0.0706 (13)	0.0503 (11)	0.0828 (15)	0.0061 (9)	0.0490 (12)	-0.0094 (10)
C12	0.0674 (13)	0.0575 (12)	0.0762 (14)	-0.0045 (10)	0.0487 (12)	-0.0074 (10)
C11	0.0603 (11)	0.0418 (9)	0.0611 (11)	-0.0072 (8)	0.0362 (10)	-0.0022 (8)
C10	0.0407 (8)	0.0330 (7)	0.0426 (8)	-0.0021 (6)	0.0185 (7)	-0.0021 (6)
C9	0.0405 (8)	0.0261 (7)	0.0359 (7)	0.0006 (6)	0.0144 (6)	0.0010 (5)
C8	0.0495 (9)	0.0318 (8)	0.0386 (8)	0.0030 (6)	0.0209 (7)	0.0021 (6)
C7	0.0632 (11)	0.0318 (8)	0.0496 (9)	0.0011 (7)	0.0325 (9)	0.0010 (7)
C6	0.0515 (9)	0.0328 (7)	0.0343 (8)	0.0058 (7)	0.0151 (7)	0.0012 (6)
C1	0.0619 (12)	0.0603 (11)	0.0391 (9)	-0.0108 (9)	0.0243 (8)	-0.0040 (8)
C2	0.0705 (14)	0.0633 (13)	0.0498 (11)	0.0025 (10)	0.0252 (10)	0.0052 (9)
C3	0.0941 (19)	0.0622 (14)	0.0802 (16)	-0.0202 (13)	0.0324 (14)	0.0070 (12)
C4	0.0686 (14)	0.0641 (13)	0.0749 (15)	-0.0181 (11)	0.0252 (12)	-0.0150 (12)
C5	0.0502 (11)	0.0731 (14)	0.0565 (12)	-0.0111 (10)	0.0103 (9)	-0.0025 (11)
O2	0.1018 (11)	0.0269 (6)	0.0487 (7)	0.0058 (6)	0.0297 (7)	0.0001 (5)

Geometric parameters (Å, °)

S3—C15	1.7395 (10)	C11—C10	1.392 (2)
S3—C9	1.7486 (15)	C11—H11	0.9300
S2—C6	1.7757 (18)	C8—C7	1.517 (2)
S2—C7	1.7828 (17)	С7—Н7А	0.9700
S1—C6	1.6624 (16)	С7—Н7В	0.9700
O1—C8	1.2163 (19)	C1—C2	1.500 (3)
N3—C9	1.291 (2)	C1—H1A	0.9700
N3—C10	1.394 (2)	C1—H1B	0.9700
N1—C6	1.329 (2)	C2—C3	1.508 (3)
N1C5	1.468 (3)	C2—H2A	0.9700
N1-C1	1.477 (2)	C2—H2B	0.9700
N2—C8	1.3586 (18)	C3—C4	1.525 (3)
N2—C9	1.3799 (17)	С3—НЗА	0.9700
N2—H3	0.8445	С3—Н3В	0.9700
C15—C14	1.3936	C4—C5	1.496 (3)
C15—C10	1.3978 (18)	C4—H4A	0.9700
C14—C13	1.377 (2)	C4—H4B	0.9700
C14—H14	0.9300	С5—Н5А	0.9700
C13—C12	1.391 (3)	С5—Н5В	0.9700

C13—H13	0.9300	O2—H2'A	0.9186
C12—C11	1.376 (3)	O2—H2'B	0.9083
С12—Н12	0.9300		
C15—S3—C9	87.99 (6)	S2—C7—H7B	108.6
C6—S2—C7	102.54 (8)	H7A—C7—H7B	107.6
C9—N3—C10	109.94 (13)	N1—C6—S1	124.85 (14)
C6—N1—C5	122.35 (16)	N1—C6—S2	113.75 (12)
C6—N1—C1	124.96 (15)	S1—C6—S2	121.40 (10)
C5—N1—C1	112.56 (16)	N1—C1—C2	110.48 (16)
C8—N2—C9	124.72 (11)	N1—C1—H1A	109.6
C8—N2—H3	123.5	C2—C1—H1A	109.6
C9—N2—H3	111.7	N1—C1—H1B	109.6
C14—C15—C10	121.23 (8)	C2—C1—H1B	109.6
C14—C15—S3	128.8	H1A—C1—H1B	108.1
C10—C15—S3	109.98 (9)	C1—C2—C3	111.35 (19)
C13—C14—C15	118.06 (9)	С1—С2—Н2А	109.4
C13—C14—H14	121.0	C3—C2—H2A	109.4
C15-C14-H14	121.0	C1 - C2 - H2B	109.4
C14-C13-C12	120.96 (16)	$C_3 - C_2 - H_2B$	109.4
C14—C13—H13	119.5	$H^2A = C^2 = H^2B$	108.0
C_{12} C_{13} H_{13}	119.5	$C_{2} = C_{3} = C_{4}$	110.69 (19)
C_{11} C_{12} C_{13}	121 18 (18)	$C_2 = C_3 = H_3 A$	109 5
$C_{11} - C_{12} - H_{12}$	119.4	C4 - C3 - H3A	109.5
C_{13} C_{12} H_{12}	119.4	$C_2 - C_3 - H_3 B$	109.5
C_{12} C_{11} C_{10}	118 79 (17)	C4—C3—H3B	109.5
C12_C11_H11	120.6	$H_{3} - C_{3} - H_{3} B$	109.5
C10_C11_H11	120.6	$C_{5}-C_{4}-C_{3}$	1114(2)
C_{11} C_{10} N_3	125.33 (15)	$C_5 - C_4 - H_4 \Delta$	109.3
$C_{11} - C_{10} - C_{15}$	129.55(13) 119.77(14)	$C_3 - C_4 - H_4 \Lambda$	109.3
N_{3} C_{10} C_{15}	117.77 (14)	C5_C4_H4B	109.3
$N_3 = C_1 = N_2$	120 70 (13)	$C_3 - C_4 - H_4 B$	109.3
$N_3 = C_0 = S_3$	1120.70(13)		109.5
$N_2 = C_2 = S_3^2$	117.19(12) 122.09(10)	N1_C5_C4	110.63 (18)
$01 - (8 - N)^2$	122.09(10) 122.14(14)	N1_C5_H5A	109.5
01 - 03 - 012	122.14(14) 125.17(15)	C4-C5-H5A	109.5
N_{2}^{-}	112 63 (13)	N1_C5_H5B	109.5
132 - 63 - 67	112.05 (13)	C4-C5-H5B	109.5
C8-C7-H7A	108.6	H5A_C5_H5B	109.5
S2 C7 H7A	108.6	$H_2^{\prime}A = O_2^{\prime} H_2^{\prime}B$	103.1
C8_C7_H7B	108.6	112 A—02—112 B	107.2
	100.0		170.26 (1.4)
C9—S3—C15—C14	1/9.51 (6)	C15 - S3 - C9 - N2	-1/8.26 (14)
C9 = S3 = C15 = C10	-0.94 (11)	C9 = N2 = C8 = O1	2.2 (3)
C10-C15-C14-C13	-0.05 (14)	$V_{2} = N_{2} = V_{3} = V_{3}$	-1/5.06(14)
S3-U15-U14-U13	1/9.45 (15)	$V_1 - V_8 - V_7 - S_2$	8.9 (3)
C15 - C14 - C13 - C12	0.4(3)	N2 - C8 - C7 - S2	-1/3.96 (12)
C14— $C13$ — $C12$ — $C11$	-0./(4)	$C_0 - S_2 - C_1 - C_8$	/1.97 (15)
C13—C12—C11—C10	0.6 (3)	$C_{0} = N_{1} = C_{0} = S_{1}$	-1.7 (3)
C12—C11—C10—N3	178.85 (19)	CI - NI - C6 - SI	-177.38 (15)

supplementary materials

-0.3 (3)	C5—N1—C6—S2	178.72 (16)
-179.96 (17)	C1—N1—C6—S2	3.1 (2)
-0.8 (2)	C7—S2—C6—N1	-177.71 (13)
0.00 (19)	C7—S2—C6—S1	2.73 (12)
-179.59 (14)	C6—N1—C1—C2	118.0 (2)
-179.20 (9)	C5—N1—C1—C2	-58.0 (2)
1.21 (17)	N1-C1-C2-C3	55.5 (2)
178.87 (14)	C1—C2—C3—C4	-53.5 (3)
0.03 (19)	C2—C3—C4—C5	53.3 (3)
174.61 (15)	C6—N1—C5—C4	-118.4 (2)
-6.6 (2)	C1—N1—C5—C4	57.7 (2)
0.55 (13)	C3—C4—C5—N1	-54.9 (3)
	$\begin{array}{c} -0.3 (3) \\ -179.96 (17) \\ -0.8 (2) \\ 0.00 (19) \\ -179.59 (14) \\ -179.20 (9) \\ 1.21 (17) \\ 178.87 (14) \\ 0.03 (19) \\ 174.61 (15) \\ -6.6 (2) \\ 0.55 (13) \end{array}$	-0.3 (3)C5-N1-C6-S2 $-179.96 (17)$ C1-N1-C6-S2 $-0.8 (2)$ C7-S2-C6-N1 $0.00 (19)$ C7-S2-C6-S1 $-179.59 (14)$ C6-N1-C1-C2 $-179.20 (9)$ C5-N1-C1-C2 $1.21 (17)$ N1-C1-C2-C3 $178.87 (14)$ C1-C2-C3-C4 $0.03 (19)$ C2-C3-C4-C5 $174.61 (15)$ C6-N1-C5-C4 $-6.6 (2)$ C1-N1-C5-C4 $0.55 (13)$ C3-C4-C5-N1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N2—H3···O2 ⁱ	0.84	1.91	2.745 (2)	170
O2—H2'A···N3 ⁱⁱ	0.92	2.04	2.920 (2)	160
O2—H2'B···O1 ⁱⁱⁱ	0.91	1.92	2.821 (2)	169

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) x+1, -y+1/2, z+1/2.

Fig. 1

Fig. 2

